Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Bioorg Chem ; 147: 107381, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38669781

ABSTRACT

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.

2.
J Agric Food Chem ; 72(12): 6565-6574, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498316

ABSTRACT

Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 µM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.


Subject(s)
Alkaloids , Benzodioxoles , Hyperuricemia , Piperidines , Polyunsaturated Alkamides , Humans , Mice , Animals , Hyperuricemia/drug therapy , Uric Acid/metabolism , Kidney/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Membrane Transport Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Antibiotics (Basel) ; 12(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760718

ABSTRACT

Pseudomonas aeruginosa with difficult-to-treat resistance has been designated as an urgent or serious threat by the CDC in the United States; therefore, novel antibacterial drugs and combination strategies are urgently needed. The sensor kinase RoxS is necessary for the aerobic growth of Pseudomonas aeruginosa. This study aimed to screen candidate RoxS inhibitors and evaluate their efficacy in treating multi-drug-resistant and extensively drug-resistant Pseudomonas aeruginosa in combination with meropenem and amikacin to identify promising combination strategies. RoxS protein structures were constructed using homology modeling and potential RoxS inhibitors, including Ezetimibe, Deferasirox, and Posaconazole, were screened from the FDA-approved ZINC drug database using molecular docking and molecular dynamics simulations. MIC and checkerboard assays were used to determine the in vitro antimicrobial efficacy of the three drugs in combination with antibiotics. The results of in vitro experiments showed an additive effect of 100 µg/mL Deferasirox or 16 µg/mL Posaconazole in combination with meropenem and a synergistic effect of 1.5 µg/mL Deferasirox and amikacin. In summary, these three drugs are potential inhibitors of RoxS, and their combination with meropenem or amikacin is expected to reverse the resistance of P. aeruginosa, providing new combination strategies for the treatment of clinically difficult-to-treat Pseudomonas aeruginosa.

4.
J Nat Prod ; 86(9): 2091-2101, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37625387

ABSTRACT

In the present study, a natural product database of compounds associated with herbs traditionally verified to treat gout/hyperuricemia/arthritis was constructed. 3D-shape and docking-based virtual screening was conducted. To identify potential xanthine oxidase (XOD) inhibitors in the database, eight compounds with commercial availability were identified as high 3D-shape similarity with febuxostat (1), a known XOD inhibitor. Docking was used to further predict the possible interactions between XOD and these compounds. Moracin C (2), moracin D (3), and isoformononetin (8) exhibited higher docking scores and binding energies than other compounds. In vitro, 2 inhibited XOD with an IC50 value of 0.25 ± 0.14 µM, which is similar to that of 1 (0.16 ± 0.08 µM). In a hyperuricemic mouse model, 5-20 mg/kg 2 exhibited satisfying urate-lowering and XOD inhibitory effects. Compound 2 also exhibited antiarthritis activities. In RAW264.7 cells, 2 at 1-10 µM inhibited the expression of IL-1ß and TNF-α induced by MSU. In an acute gouty arthritis model in SD rats, 5-20 mg/kg 2 significantly alleviated the toe swelling, inflammatory response, and dysfunction disorder caused by monosodium urate (MSU). Compound 2 inhibited serum IL-1ß and TNF-α cytokines as well as reduced the expression of the NLRP3/ASC/caspase-1 inflammasome in joints. In summary, 2 was an effective compound for the treatment of hyperuricemia/gouty arthritis.


Subject(s)
Arthritis, Gouty , Hyperuricemia , Mice , Rats , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Arthritis, Gouty/drug therapy , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Uric Acid/adverse effects , Enzyme Inhibitors
5.
Front Pharmacol ; 14: 1016633, 2023.
Article in English | MEDLINE | ID: mdl-36817129

ABSTRACT

Hyperuricemia (HUA) is associated with left ventricular remodeling (LVR) and thereby causes the initiation and development of a large number of cardiovascular diseases. LVR is typically accompanied by cardiomyocyte energy metabolic disorder. The energy supply of cardiomyocytes is provided by glucose and fatty acid (FA) metabolism. Currently, the effect of HUA on cardiomyocytic FA metabolism is unclear. In this study, we demonstrate that UA-induced cardiomyocyte injury is associated with cytoplasmic lipid deposition, which can be ameliorated by the FA metabolism-promoting drug L-carnitine (LC). UA suppresses carnitine palmitoyl transferase 1B (CPT1B), thereby inhibiting FA transport into the mitochondrial inner matrix for elimination. LC intervention can ameliorate HUA-associated left ventricular anterior wall thickening in mice. This study showed that FA transport dysfunction plays is a critical mechanism in both cardiomyocytic injury and HUA-associated LVR and promoting cytoplasmic FA transportation through pharmacological treatment by LC is a valid strategy to attenuate HUA-associated LVR.

6.
Comput Biol Med ; 155: 106637, 2023 03.
Article in English | MEDLINE | ID: mdl-36791549

ABSTRACT

BACKGROUND: Hyperuricemia is a more popular metabolic disease caused by a disorder of purine metabolism. Our previous study firstly screened out a natural product Isobavachin as anti-hyperuricemia targeted hURAT1 from a Chinese medicine Haitongpi (Cortex Erythrinae). In view of Isobavachin's diverse pharmacological activities, similar to the Tranilast (as another hURAT1 inhibitor), our study focused on its potential targets and molecular mechanisms of Isobavachin anti-hyperuricemia based on network pharmacology and molecular docking. METHODS: First of all, the putative target genes of compounds were screen out based on the public databases with different methods, such as SwissTargetPerdiction, PharmMapper and TargetNet,etc. Then the compound-pathways were obtained by the compounds' targets gene from David database for Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. The cross pathways of compound-pathways and the diseases pathways of hyperuricemia from Comparative Toxicogenomics Database were be considered as the compound-disease pathways. Next, based on the compound-disease pathways and the PPI network, the core targets were identified based on the retrieved disease-genes. Finally, the compound-target-pathway-disease network was constructed by Cytoscape and the mechanism of isobavachin anti-hyperuricemia was discussed based on the network analysis. RESULTS: Our study demonstrated that there were five pathways involved in Isobavachin against hyperuricemia, including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system and Renin secretion. Among the proteins involved in these pathways, HPRT1, REN and ABCG2 were identified as the core targets associated with hyperuricemia, which regulated the five pathways mentioned above. It is quite different from that of Tranilast, which involved in the same pathways except Bile secretion instead of purine metabolism. CONCLUSION: This study revealed Isobavachin could regulate the pathways including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system, Renin secretion by core targets HPRT1, REN and ABCG2, in the treatment of hyperuricemia effect. Among them, the Bile secretion regulated by ABCG2 probably would be a novel pathway. Our work provided a theoretical basis for the pharmacological study of Isobavachin in lowering uric acid and further basic research.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Molecular Docking Simulation , Renin , Purines , Medicine, Chinese Traditional
7.
Bioorg Chem ; 133: 106405, 2023 04.
Article in English | MEDLINE | ID: mdl-36753966

ABSTRACT

Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 µM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 µM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 µM, OAT3 with an IC50 of 3.64 ± 0.62 µM, and ABCG2 with an IC50 of 10.45 ± 2.17 µM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 µM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.


Subject(s)
Flavones , Uric Acid , Xanthine Oxidase , Animals , Rats , Kidney/drug effects , Kidney/metabolism , Molecular Docking Simulation , Rats, Sprague-Dawley , Uric Acid/metabolism , Xanthine Oxidase/antagonists & inhibitors , Flavones/chemistry , Flavones/pharmacology
8.
Foods ; 11(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36360095

ABSTRACT

Hyperuricemia (HUA), characterized by abnormal serum uric acid (UA) levels, is recognized as an important risk factor for hyperuricemic nephropathy (HN), which is strongly linked to gut microbiota. This study investigated the protective effects and regulatory mechanisms of insoluble fiber from barley leaves (BL) against HN, induced by adenine (Ad) and potassium oxonate (PO). The results showed that BL dramatically reduced the levels of serum UA and creatinine (CR) and alleviated renal injury and fibrosis. Moreover, BL modulated oxidative stress and downregulated the expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys of mice with HN. In addition, the 16S rRNA sequence data showed that BL also increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroides, Alloprevotella, and Eisenbergiella. Besides, BL treatment also increased SCFAs levels. Of interest, the application of SCFAs in hyperuricemic mice effectively reduced their serum UA. Furthermore, SCFAs dose-dependently inhibited URAT1 and GLUT9 in vitro and potently interacted with URAT1 and GLUT9 in the docking analysis. When taken together, our results indicate that BL and its metabolite SCFAs may be potential candidates for relieving HUA or HN.

9.
ACS Omega ; 7(38): 34621-34631, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188325

ABSTRACT

Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for hyperuricemia. Due to a lack of crystal structure information, the atomic structure of URAT1 is not clearly understood. In this study, a multiple sequence alignment was performed, and K393, a positively charged residue in transmembrane domain (TMD) 8, was observed to be highly conserved in organic anion transporters (OATs). K393 was substituted with a positively, negatively, and neutrally charged amino acid via site-directed mutagenesis and then used to transfect HEK293 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analyses indicated that mutants of K393 showed mRNA and protein expression levels similar to those in the WT group. The nonpositively charged mutants K393A, K393D, and K393E eliminated 70-80% of 14C-uric acid transport capacity, while the K393H mutant showed slight and the K393R mutant showed no reduced transport capacity compared with the WT group. Binding assays indicated that K393A, K393D, and K393E conferred lowered uric acid binding affinity. As indicated by the K m and V max values obtained from saturation kinetic experiments, K393A, K393D, and K393E showed increased K m values, but K393R and K393H showed K m values similar to those in the WT group. K393 also contributed to a high affinity for benzbromarone (BM) interaction. The inhibitory effects of BM were partly abolished in K393 mutants, with increased IC50 values compared with the WT group. BM also exhibited weaker inhibitory effects on 14C-uric acid binding in K393R and K393H mutants. In an outward homology model of URAT1, K393 was located in the inner part of the transport tunnel, and further molecular docking analysis indicated that uric acid and BM showed possible hydrogen bonds with K393. Mutants K393R and K393H showed possible interactions with uric acid, and positive charges confer high affinity for uric acid as revealed by their surface electrostatic potential. In conclusion, our data provide evidence that K393 is an important residue for the recognition of uric acid or inhibitors by URAT1.

10.
Eur J Med Chem ; 242: 114682, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36001935

ABSTRACT

Benzbromarone (BM) is a potent URAT1 inhibitor approved for the treatment of gout. However, the low URAT1-selectivity and hepatotoxcity limit its clinical use. To solve these problems, we rationally designed and synthesized a series of BM derivatives by chemotype hybridization and bioisosteric replacement. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 5.83 µM to 0.80 µM. Among them, JNS4 exhibited the highest URAT1 inhibitory activity with an IC50 of 0.80 µM, comparable to that of BM (IC50 = 0.53 µM). Molecular dynamic simulations showed that JNS4 formed π-cation interaction with R477, the same as BM. Different from BM, JNS4 bound to W357 and H245 via π-π interactions and formed a hydrogen bond with S35, which might contribute to the high URAT1 binding affinity of JNS4. JNS4 hardly inhibited GLUT9 (IC50 > 20 µM), another urate reabsorption transporter. In addition, JNS4 showed little inhibitory effects against OAT1 and ABCG2 with IC50 of 4.04 µM and 10.16 µM, respectively. Importantly, JNS4 displayed higher in vivo urate-lowering effects at doses of 1-4 mg/kg in a mouse model of hyperuricemia, as compared to BM and lesinurad. Furthermore, JNS4 possessed favorable pharmacokinetic properties with an oral bioavailability of 55.28%, significantly higher than that of BM (36.11%). Moreover, JNS4 demonstrated benign toxicity profiles (no cytotoxicities against HepG2 and HK2 cells; no hepatic and renal toxicities observed in vivo). Collectively, these results suggest that JNS4 represents a novel, safe and selective URAT1 inhibitor with excellent druggabilities and is worthy of further investigation as an anti-hyperuricemic agent.


Subject(s)
Hyperuricemia , Organic Anion Transporters , Animals , Benzbromarone/pharmacology , Benzbromarone/therapeutic use , Hyperuricemia/drug therapy , Mice , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/therapeutic use , Uric Acid/metabolism , Uricosuric Agents/pharmacokinetics , Uricosuric Agents/therapeutic use
11.
Eur J Med Chem ; 229: 114092, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34998055

ABSTRACT

Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 µM to 16.35 µM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 µM, comparable to that of verinurad (IC50 = 0.17 µM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 µM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.


Subject(s)
Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Hyperuricemia/drug therapy , Naphthalenes/chemistry , Organic Anion Transporters/antagonists & inhibitors , Organic Cation Transport Proteins/antagonists & inhibitors , Propionates/chemistry , Pyridines/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Humans , Kidney , Naphthalenes/toxicity , Organic Anion Transport Protein 1/metabolism , Propionates/toxicity , Pyridines/toxicity , Uric Acid/blood
13.
Acta Pharmacol Sin ; 43(1): 121-132, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33767379

ABSTRACT

Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 µM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 µM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 µM, whereas RDEA3170 at 100 µM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 µM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.


Subject(s)
Glucose Transport Proteins, Facilitative , Hyperuricemia , Organic Anion Transporters , Organic Cation Transport Proteins , Humans , Cells, Cultured , Dose-Response Relationship, Drug , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , HEK293 Cells , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Molecular Structure , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structure-Activity Relationship
14.
Bioorg Chem ; 117: 105444, 2021 12.
Article in English | MEDLINE | ID: mdl-34775203

ABSTRACT

As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 µM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 µM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.


Subject(s)
Biological Products/pharmacology , Drugs, Chinese Herbal/pharmacology , Flavones/pharmacology , Hyperuricemia/drug therapy , Molecular Docking Simulation , Organic Anion Transporters/antagonists & inhibitors , Organic Cation Transport Proteins/antagonists & inhibitors , Animals , Biological Products/chemistry , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Flavones/chemistry , Hyperuricemia/metabolism , Male , Medicine, Chinese Traditional , Mice , Mice, Inbred Strains , Molecular Structure , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Structure-Activity Relationship
15.
Adv Healthc Mater ; 10(19): e2100770, 2021 10.
Article in English | MEDLINE | ID: mdl-34190424

ABSTRACT

The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.


Subject(s)
Glutathione , Photochemotherapy , Antioxidants/pharmacology , Buthionine Sulfoximine , Heme Oxygenase-1
16.
Food Funct ; 12(18): 8274-8287, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34180933

ABSTRACT

Accumulating evidence has shown that chronic injection of D-galactose (D-gal) can mimic natural ageing and induce liver and kidney injury. Previous studies showed that D-gal increased uric acid (UA) levels in mice. The increase in UA levels caused inflammation, accelerated oxidative stress, and aggravated liver and kidney injury. Oxidative stress and inflammation play vital roles in the ageing process. Therefore, reducing the levels of UA in ageing mice improved liver and kidney injury. Glucose transporter 9 (GLUT9) is responsible for the reabsorption of UA in the body, and its inhibition helps downregulate UA levels. The present study investigated the UA-lowering activity of the GLUT9 inhibitor resveratrol (RSV) using the patch clamping technique established in our laboratory in vitro. This research is the first study to demonstrate that RSV effectively inhibits UA uptake via GLUT9 (IC50 = 68.77 µM) in vitro. An in vivo study was also performed to investigate the possible protective effect of RSV on D-gal-induced liver and kidney injury. RSV significantly reduced serum UA levels via the downregulation of GLUT9 mRNA and protein expression and promoted the excretion of excess UA through urine. Biochemical analysis showed that RSV significantly downregulated abnormal increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine (CRE) caused by long-term D-gal treatment, which effectively improved pathological damage, increased superoxide dismutase (SOD) activity and decreased the content of malondialdehyde (MDA) in the liver and kidneys. RSV also downregulated the expression of the inflammatory cytokines, interleukin IL-6, IL-1ß and tumor necrosis factor (TNF)-α in the liver and kidneys of ageing mice. Our findings provide new insights into the treatment strategies for ageing-induced liver and kidney injury and reveal a new mechanism of RSV-induced reduction in UA levels in ageing individuals.


Subject(s)
Aging/drug effects , Galactose/toxicity , Gene Expression Regulation/drug effects , Glucose Transport Proteins, Facilitative/metabolism , Resveratrol/pharmacology , Uric Acid/metabolism , Animals , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Epithelial Cells/drug effects , Female , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/genetics , Kidney/drug effects , Kidney Tubules/cytology , Liver/drug effects , Male , Mice , Molecular Structure , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Resveratrol/chemistry
17.
Phytomedicine ; 87: 153585, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34044255

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is characterized by abnormal serum uric acid (UA) levels and demonstrated to be involved in renal injury leading to hyperuricemic nephropathy (HN). Apigenin (API), a flavonoid naturally present in tea, berries, fruits, and vegetables, exhibits various biological functions, such as antioxidant and anti-inflammatory activity. PURPOSE: To investigate the effect of API treatment in HN and to reveal its underlying mechanisms. METHODS: The mice with HN were induced by potassium oxonate intraperitoneally and orally administered for two weeks. The effects of API on renal function, inflammation, fibrosis, and uric acid (UA) metabolism in mice with HN were evaluated. The effects of API on urate transporters were further examined in vitro. RESULTS: The mice with HN exhibited abnormal renal urate excretion and renal dysfunction accompanied by increased renal inflammation and fibrosis. In contrast, API reduced the levels of serum UA, serum creatinine (CRE), blood urea nitrogen (BUN) and renal inflammatory factors in mice with HN. Besides, API ameliorated the renal fibrosis via Wnt/ß-catenin pathway suppression. Furthermore, API potently promoted urinary UA excretion and inhibited renal urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in mice with HN. In vitro, API competitively inhibited URAT1 and GLUT9 in a dose-dependent manner, with IC50 values of 0.64 ± 0.14 µM and 2.63 ± 0.69 µM, respectively. CONCLUSIONS: API could effectively attenuate HN through co-inhibiting UA reabsorption and Wnt/ß-catenin pathway, and thus it might be a potential therapy to HN.


Subject(s)
Apigenin/pharmacology , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Hyperuricemia/drug therapy , Kidney Diseases/drug therapy , Organic Anion Transporters/antagonists & inhibitors , Animals , Apigenin/administration & dosage , Creatinine/blood , Dose-Response Relationship, Drug , Fibrosis , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , HEK293 Cells , Humans , Hyperuricemia/chemically induced , Hyperuricemia/physiopathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Nephritis/drug therapy , Nephritis/pathology , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Oxonic Acid/toxicity , Uric Acid/blood , Uric Acid/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
18.
SLAS Discov ; 26(3): 450-459, 2021 03.
Article in English | MEDLINE | ID: mdl-32844721

ABSTRACT

Glucose transporter 9 (GLUT9), which transports urate in an electrogenic and voltage-dependent manner, plays an important role in the maintenance of normal blood uric acid/urate levels. In the present study, we established a cell model based on the single-electrode patch-clamp technique for characterization of GLUT9 and explored the inhibitory effects of benzobromarone (BM) and probenecid (PB) on urate-induced currents in mouse GLUT9a (mGLUT9a)-expressing HEK-293T cells. The results showed that uric acid, rather than glucose perfusion, led to a rapid and large outward current by mGLUT9a in dose-, voltage-, and pH-dependent manners. BM prominently and irreversibly inhibited the uric acid-induced currents through mGLUT9a, and PB weakly and reversibly inhibited mGLUT9a. We found that depletion of K+ in the external solution significantly strengthened the blockade of BM on mGLUT9a. In addition, an enhanced inhibitory rate of BM was detected when the pH of the external solution was changed from 7.4 to 5.5, indicating that BM functions optimally in an acidic environment. In conclusion, the combination of the established cell model with patch-clamp techniques first revealed the function properties of GLUT9 inhibitors and may provide potential benefits to the study of GLUT9 inhibitors as antihyperuricemic or antigout agents.


Subject(s)
Benzbromarone/pharmacology , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Gout Suppressants/pharmacology , Patch-Clamp Techniques/methods , Probenecid/pharmacology , Uric Acid/metabolism , Animals , Biological Transport/drug effects , Gene Expression , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Naphthalenes/pharmacology , Plasmids/chemistry , Plasmids/metabolism , Potassium/metabolism , Propionates/pharmacology , Pyridines/pharmacology , Transgenes
19.
Phytomedicine ; 80: 153374, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33075645

ABSTRACT

BACKGROUND: Insufficient renal urate excretion and/or overproduction of uric acid (UA) are the dominant causes of hyperuricemia. Baicalein (BAL) is widely distributed in dietary plants and has extensive biological activities, including antioxidative, anti-inflammatory and antihypertensive activities. PURPOSE: To investigate the anti-hyperuricemic effects of BAL and the underlying mechanisms in vitro and in vivo. METHODS: We investigated the inhibitory effects of BAL on GLUT9 and URAT1 in vitro through electrophysiological experiments and 14C-urate uptake assays. To evaluate the impact of BAL on serum and urine UA, the expression of GLUT9 and URAT1, and the activity of xanthine oxidase (XOD), we developed a mouse hyperuricemia model by potassium oxonate (PO) injection. Molecular docking analysis based on homology modeling was performed to explain the predominant efficacy of BAL compared with the other test compounds. RESULTS: BAL dose-dependently inhibited GLUT9 and URAT1 in a noncompetitive manner with IC50 values of 30.17 ± 8.68 µM and 31.56 ± 1.37 µM, respectively. BAL (200 mg/kg) significantly decreased serum UA and enhanced renal urate excretion in PO-induced hyperuricemic mice. Moreover, the expression of GLUT9 and URAT1 in the kidney was downregulated, and XOD activity in the serum and liver was suppressed. The docking analysis revealed that BAL potently interacted with Trp336, Asp462, Tyr71 and Gln328 of GLUT9 and Ser35 and Phe241 of URAT1. CONCLUSION: These results indicated that BAL exerts potent antihyperuricemic efects through renal UA excretal promotion and serum UA production. Thus, we propose that BAL may be a promising treatment for the prevention of hyperuricemia owing to its multitargeted inhibitory activity.


Subject(s)
Flavanones/pharmacology , Hyperuricemia/drug therapy , Uric Acid/urine , Xanthine Oxidase/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Flavanones/chemistry , Flavanones/metabolism , Glucose Transport Proteins, Facilitative/chemistry , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , HEK293 Cells , Humans , Hyperuricemia/chemically induced , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Male , Mice , Molecular Docking Simulation , Organic Anion Transporters/chemistry , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/chemistry , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Oxonic Acid/toxicity , Uric Acid/blood
20.
J Med Chem ; 63(19): 10829-10854, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32897699

ABSTRACT

Lesinurad, a human urate transporter 1 (URAT1) inhibitor approved as a medication for the treatment of hyperuricemia associated with gout in 2015, can cause liver and renal toxicity. Here, we modified all three structural components of lesinurad by applying scaffold hopping, bioisosterism, and substituent-decorating strategies. In a mouse model of acute hyperuricemia, 21 of the synthesized compounds showed increased serum uric acid (SUA)-reducing activity; SUA was about 4-fold lower in animals treated with 44, 54, and 83 compared with lesinurad or benzbromarone. In the URAT1 inhibition assay, 44 was over 8-fold more potent than lesinurad (IC50: 1.57 µM vs 13.21 µM). Notably, 83 also displayed potent inhibitory activity (IC50 = 31.73 µM) against GLUT9. Furthermore, we also preliminarily explored the effect of chirality on the potency of the promising derivatives 44 and 54. Compounds 44, 54, and 83 showed favorable drug-like pharmacokinetics and appear to be promising candidates for the treatment of hyperuricemia and gout.


Subject(s)
Gout/drug therapy , Hyperuricemia/drug therapy , Organic Anion Transporters/antagonists & inhibitors , Organic Cation Transport Proteins/antagonists & inhibitors , Uricosuric Agents/pharmacology , Animals , Carbon-13 Magnetic Resonance Spectroscopy , HEK293 Cells , Humans , Mass Spectrometry , Mice , Proton Magnetic Resonance Spectroscopy , Rats , Structure-Activity Relationship , Uricosuric Agents/chemistry , Uricosuric Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...